CubeSat & other satellites

What is a nanosatellite?

In mass-classification and very strictly nanosatellite is any satellite with mass from 1 kg to 10 kg. In this database term "nanosatellite" covers all CubeSats, PocketQubes, TubeSats, SunCubes and non-standard picosatellites, unless otherwise stated.

It is because they are all part of the same CubeSat revolution and modern electronics technology leap. Limiting to 1 - 10 kg would be confusing and difficult. For example 1U CubeSat can be 0.8 kg but also 1.3 kg while 6U can be less or more than 10 kg and most are not public.

Upper limit in this database is 10 kg for non-standard types of nanosats or 27U CubeSat (30-40 kg). Lower limit is 1p PocketQubes or custom picosatellites over 100 g or SunCubes that can be less than 100 g.

Chipsats are not included. Breakthrough Starshot calls them nanocrafts, but should be attosatellites (attosats). They will be the big leap in future: "gram-scale wafer, carrying cameras, photon thrusters, power supply, navigation and communication equipment."

Satellite mass classification

  • Large satellites: >1000 kg
  • Medium satellites: 500 to 1000 kg
  • Small satellites: < 500 kg
    • Minisatellites: 100 to 500 kg
    • Microsatellites: 10 to 100 kg
    • Nanosatellites: 1 to 10 kg
    • Picosatellites: 100 g – 1 kg
    • Femtosatellites: 10 g – 100 g
    • Attosatellites: 1 g – 10 g
    • Zeptosatellites: 0.1 g – 1 g

Small satellite (smallsat) is any satellite below 500 kg. That term should be used as little as possible, because there can be very large differences in sizes and capabilities.

What is a CubeSat?

CubeSats are a type of nanosatellites defined by the CubeSat Design Specification (CSD).

  • 1U is 10 cm × 10 cm × 11.35 cm.
  • 2U is 10 cm × 10 cm × 22.7 cm.
  • Smallest existing is 0.25U and largest is 27U.

There are 2 different classes of deployers:
1. First type is the classic 4 rails in the corners. Recommend to take into account new deployers, because dispensers from ISIS and NanoRacks allow larger deployables, wider solar panels and thinner rails compared to original P-POD. For example

  • extruded height can be 9 mm instead of 6.5 mm and
  • can be up to 2 kg per 1U which should not cause problems with launch providers.


2. Second type is tabs on Planetary Corp Systems (PSC) dispensers. The 13 CubeSats that will fly on SLS in 2018 will use this.

CubeSat rails vs tabs
CubeSats with Rails or Tabs comparison by Planetary Systems Corporation (PSC)

CubeSat example sizes

CubeSat sizes from 1U to 16U
CubeSats from 1U to 16U by ECM Space

CubeSat quotes

It all started as a university education program satellite. It was kind of funny. I didn't think that people would criticize it as much as they did, but we got a lot of feedback, you know, "That's the dumbest idea I've ever heard. Nobody's going to use this toy." We said, "Who the heck cares. We'll go ahead and use it. We're using it for education."
A chat with Bob Twiggs by Stephen Clark, 2014, spaceflightnow.com
Another thing that was kind of funny is we had no interest from NASA or any of the military organizations. It just wasn't anything they were interested in, so it was all funded without any funding from those aerospace organizations. I'm kind of glad that NASA didn't help us, or we'd probably never got it done.
It was developed for the education of students. If you make it small, they can't put much in it, so they get it done quicker, and hopefully you can get it launched for a lot less money. I don't think Jordi Puig-Suari at Cal Poly or myself had any idea that we'd see days like this. A chat with Bob Twiggs by Stephen Clark, 2014, spaceflightnow.com
Early launch providers were Russian. We did go to some of the American launch providers, Lockheed Martin comes to mind, and they said, "If you give us a half-million dollars, we'll study it, and then if it makes economic sense for us to launch it, we'll do it." We kept asking them to take some of the lead (ballast) off and fly some of these things as secondaries, but they just didn't go along with it. I was really disappointed that the aerospace industry couldn't see the benefit other than profits from it. They couldn't see the educational benefit from it, and the potential of the educational benefit turning into commercial applications. Now, you see the commercial applications coming along with Skybox Imaging, with Planet Labs. Oh my goodness, they look like they have a tremendous economic potential. A chat with Bob Twiggs by Stephen Clark, 2014, spaceflightnow.com

PocketQubes

PocketQubes are 5 cm cubes compared to 10 cm CubeSats.

  • 1p is 5 cm × 5 cm × 5 cm.
  • 3p is 5 cm × 5 cm × 17.8 cm.

The concept was announced in 2009 at 2nd European CubeSat Symposium. Only launches have been from UniSat satellites, but recently Alba Orbital (PocketQubeShop) started development of a large deployer for constellations.

There are also 2 types of PocketQubes: MRFOD and CubeSat dispenser compatible.

MRFOD PocketQubes

MRFOD has a backplate that slides into deployer rails. Only MRFOD type of PocketQubes have been launched to space using the Morehead-Roma FemtoSat Orbital Deployer (MRFOD) onboard UniSat-5 satellite.

3p MRFOD PocketQube
3p MRFOD PocketQube by Radius Space

CubeSat compatible PocketQubes

8 would fit and be deployed from a 1U CubeSat dispenser. This was the original idea, but none have been launched. It requires close cooperation between manufactures or a single organisation should launch all at the same time.

CubeSat compatible PocketQube concept
CubeSat compatible PocketQube concept by Radius Space

PocketQube quotes

Like in the early days of CubeSats, many people at this moment regard PocketQubes as merely educational toys rather than promising platforms. At TU Delft we however want to demonstrate that this is a misconception. The small size of PocketQubes will force us to think differently about space technology and the development thereof. In short, TU Delft wants to be pioneers in a relatively under-explored class of satellites and a point of reference to everyone in this field. Delfi-PQ Mission, Delft University of Technology
“TU Delft can’t compete,” said Jasper Bouwmeester. Space technology companies, especially those based in the US, get up to hundreds of millions in venture capital funding. Universities research groups don’t have access to that sort of money and the field of CubeSat development is currently dominated by private industry. According to Bouwmeester, TU Delft had three choices: leave the field, develop only very niche satellite applications or go smaller. The 5 x 5 x 18 cm prototype on his desk is the outcome of that decision. His research group plans to launch their first PocketQube in early 2018. After that, they anticipate launching these satellites one to two times per year. PocketQubes offer much to scientific progress, Delft University of Technology

TubeSats

TubeSats measure 8.9 cm in diameter, 12.7 cm in length and weigh 0.75 kg. First 2 were launched in 2016 on TuPOD 3U CubeSat from GAUSS. Using a CubeSat to deploy 2 TubeSats makes launch costs comparable to 1U-2U CubeSat, but opportunities are very rare. The only advantage seems to be much simpler and less expensive deployer for rockets.

TubeSat kits were created by Interorbital and cost only $8000 including free flight, which likely makes it affordable for many teams. They have sold 100+, but first launch has been delayed by more than 5 years. Also, launching 24 TubeSats on a rocket gives a revenue of $192,000 which seems low considering all the expenses. Unless Interorbital starts with launches soon, there likely will not be a future for TubeSats.

Tancredo-1 and OSNSAT TubeSats
Tancredo-1 and OSNSAT TubeSats by GAUSS

SunCubes

SunCubes are 3 cm cubes. 1F is 3 cm × 3 cm × 3 cm and 3F is 3 cm × 3 cm × 9 cm. Goal is to make satellites even more affordable. None have been launched, but were announced in 2016. 1U CubeSat can fit 27 1F SunCubes, but it might be wiser to add internal walls to deployer. Assuming $80,000 to launch 1U then SunCube should come to only $3000!

Challenge could be filling 1U CubeSat with 27 SunCubes unless all of them are from the same organization and part of a constellation. Deploying 27 SunCubes at the same time could also create problems with collisions and tracking meaning one-by-one deployment might be needed. First SunCubes will be likely be launched from satellites (CubeSats) that will have other primary missions.

1F SunCube
1F SunCube by Arizona State University

Feel free to connect at any time. Always glad to receive your questions and feedback.

Created by Erik Kulu

Email: erikkulu@gmail.com
LinkedIn: linkedin.com/in/erikkulu

Follow for updates

LinkedIn: Nanosatellite Database
Twitter: twitter.com/nanosatellites